This post was kindly contributed by DATA ANALYSIS - go there to comment and to read the full post. |
Thanks Jared Hobbs’ sas7bdat package, Python can read SAS’s data sets quickly and precisely. And it will be great to have a few extension functions to enhance this package with SQLite and Pandas.
The good things to transfer SAS libraries to SQLite:
- Size reduction:
SAS’s sas7bdat format is verbose. So far successfully loaded 40GB SAS data to SQLite with 85% reduction of disk usage. - Save the cost to buy SAS/ACCESS
SAS/ACCESS costs around $8,000 a year for a server, while SQLite is accessible for most common softwares.
The good things to transfer SAS data set to Pandas:
- Pandas’ powerful Excel interface:
Write very large Excel file quickly as long as memory can hold data. - Validation of statistics
Pandas works well withstatsmodels
andscikit-learn
. Easy to validate SAS’s outputs.
This post was kindly contributed by DATA ANALYSIS - go there to comment and to read the full post. |