This post was kindly contributed by DATA ANALYSIS - go there to comment and to read the full post. |
The most hard part in testing is to write test cases, which is time-consuming and error-prone. Fortunately, besides Python built-in modules such as
doctest
, unittest
, there are quite a few third-party packages that could help with automated testing. My favorite one is pytest, which enjoys proven record and syntax sugar. Step 1: test-driven development
For example, there is a coding challenge on Leetcode:
Find Minimum in Rotated Sorted ArraySuppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).
Find the minimum element.
You may assume no duplicate exists in the array.
The straightforward way to find a minimal element in an array(or list in Python) is sequential searching, which goes through every element and has a time complexity of
However, this question provides a rotated sorted array, which suggests a binary search and reduces the complexity from
O(N)
. If the array is sorted, then the minimal one is the first element that only costs O(1)
.However, this question provides a rotated sorted array, which suggests a binary search and reduces the complexity from
O(N)
to O(logN)
.As usual, write the test cases first. The great thing for pytest is that it significantly simplies the effort to code the test cases: in this example, I only use 3 lines to generate 101 test cases to cover all conditions from 0 to 99 and also include an null test.
Next step is to code the function. It is easy to transplant the iterative approach of binary search to this question. If the pointer is between a sorted segment, then return the most left element as minimal. Otherwise, adjust the right boundary and the left boundary.
# test1.py
import pytest
# Prepare 101 test cases
array = list(range(100))
_testdata = [[array[i: ] + array[ :i], 0] for i in range(100)]
_testdata += [pytest.mark.empty(([], None))]
# Code the initial binary search function
def findMinPrev(num):
lo, hi = 0, len(num) - 1
while lo <= hi:
if num[lo] <= num[hi]:
return num[lo]
mid = (lo + hi) / 2
if num[mid] < num[hi]:
hi = mid - 1
else:
lo = mid + 1
@pytest.mark.parametrize('input, expected', _testdata)
def test_findMinPrev(input, expected):
assert findMinPrev(input) == expected
After running the
py.test -v test1.py
command, part of the results shows below. 65 tests passed and 36 failed; the failed cases return the much bigger values that suggests out of boundary during loops, and the selection of the boudaries may be too aggresive. test1.py:20: AssertionError
_________________________ test_findMinPrev[input98-0] _________________________
input = [98, 99, 0, 1, 2, 3, ...], expected = 0
@pytest.mark.parametrize('input, expected', _testdata)
def test_findMinPrev(input, expected):
> assert findMinPrev(input) == expected
E assert 98 == 0
E + where 98 = findMinPrev([98, 99, 0, 1, 2, 3, ...])
test1.py:20: AssertionError
==================== 36 failed, 65 passed in 0.72 seconds =====================
Now I adjust the right boundary slightly and finally come up with a solution that passes all the tests.
def findMin(num):
lo, hi = 0, len(num) - 1
while lo <= hi:
if num[lo] <= num[hi]:
return num[lo]
mid = (lo + hi) / 2
if num[mid] < num[hi]:
hi = mid
else:
lo = mid + 1
Step 2: performance profiling
Besides the right solution, I am also interested in if the binary search method has indeed improved the performance. This step I choose line_profiler given its line-by-line ability of profiling. I take the most basic one (the sequential search) as benchmark, and also include the method that applies the
min
function since a few functions similar to it in Pyhton implement vectorizaiton to speed up. The test case is a rotated sorted array with 10 million elements. # test2.py
from line_profiler import LineProfiler
from sys import maxint
@profile
def findMinRaw(num):
"""Sequential searching"""
if not num:
return
min_val = maxint
for x in num:
if x < min_val:
min_val = x
return min_val
@profile
def findMinLst(num):
"""Searching by list comprehension"""
if not num:
return
return min(num)
@profile
def findMin(num):
""""Binary search"""
lo, hi = 0, len(num) - 1
while lo <= hi:
if num[lo] <= num[hi]:
return num[lo]
mid = (lo + hi) / 2
if num[mid] < num[hi]:
hi = mid
else:
lo = mid + 1
# Prepare a rotated array
array = list(range(10000000))
_testdata = array[56780: ] + array[ :56780]
# Test the three functions
findMinRaw(_testdata)
findMinLst(_testdata)
findMin(_testdata)
After running
kernprof -l -v test2.py
, I have the output as below. The sequential search has hit the loops 10000001 times and costs almost 14 seconds. The min
function encapsulate all details inside and uses 0.5 seconds which is 28 times faster. On the contrary, the binary search method only takes 20 loops to find the minimal value and spends just 0.0001 seconds. As a result, while dealing with large number, an improved algorithm can really save time. Total time: 13.8512 s
File: test2.py
Function: findMinRaw at line 4
Line # Hits Time Per Hit % Time Line Contents
==============================================================
4 @profile
5 def findMinRaw(num):
6 1 13 13.0 0.0 if not num:
7 return
8 1 3 3.0 0.0 min_val = maxint
9 10000001 16031900 1.6 47.5 for x in num:
10 10000000 17707821 1.8 52.5 if x < min_val:
11 2 5 2.5 0.0 min_val = x
12 1 3 3.0 0.0 return min_val
Total time: 0.510298 s
File: test2.py
Function: findMinLst at line 15
Line # Hits Time Per Hit % Time Line Contents
==============================================================
15 @profile
16 def findMinLst(num):
17 1 4 4.0 0.0 if not num:
18 return
19 1 1243016 1243016.0 100.0 return min(num)
Total time: 0.000101812 s
File: test2.py
Function: findMin at line 22
Line # Hits Time Per Hit % Time Line Contents
==============================================================
22 @profile
23 def findMin(num):
24 1 15 15.0 6.0 lo, hi = 0, len(num) - 1
25 20 40 2.0 16.1 while lo <= hi:
26 20 48 2.4 19.4 if num[lo] <= num[hi]:
27 1 2 2.0 0.8 return num[lo]
28 19 54 2.8 21.8 mid = (lo + hi) / 2
29 19 50 2.6 20.2 if num[mid] < num[hi]:
30 5 10 2.0 4.0 hi = mid
31 else:
32 14 29 2.1 11.7 lo = mid + 1