**StudySAS Blog: Mastering Clinical Data Management with SAS** 2024-09-05 23:02:00

Dynamic Macro Creation in SAS: Enhancing Automation and Flexibility

Dynamic Macro Creation in SAS: Enhancing Automation and Flexibility

Dynamic macro creation is a powerful technique in SAS that allows you to generate macro variables and macros based on data content or logic at runtime. This not only simplifies repetitive tasks but also provides a way to dynamically control program flow. In this article, we’ll cover various scenarios and provide multiple examples where dynamic macro creation can be beneficial.

Why Use Dynamic Macros?

  • Automation: Automate repetitive processes by generating macro variables based on dataset values.
  • Flexibility: Dynamic macros adjust based on the changing content of your datasets.
  • Efficient Code: Using dynamic macros reduces redundancy and ensures that your code adapts to different data structures without manual intervention.

Scenario 1: Generating Macros Based on Dataset Variables

Imagine a scenario where you have a dataset and need to dynamically create macros to store variable names or their values. This is useful for automating variable processing tasks, such as generating reports, manipulating data, or performing analyses.

Example 1: Creating Macros for Variable Names

/* Create macros for each unique variable in the dataset */
proc sql;
   select distinct name
   into :var1-:varN
   from sashelp.class;
quit;

%macro display_vars;
   %do i=1 %to &sqlobs;
      %put &&var&i;
   %end;
%mend display_vars;

%display_vars;

    

Explanation: This code dynamically selects variable names from the sashelp.class dataset and stores them in macro variables. The macro display_vars prints out each variable name, allowing flexible processing of variables without knowing them in advance.

Scenario 2: Automating Data Processing Based on Unique Values

Let’s say you have multiple categories or groups within your data, and you need to run a set of analyses or create reports for each unique group. You can dynamically generate macros for each category, making the process scalable and automated.

Example 2: Creating Macros for Unique Categories

/* Create macros for each unique 'sex' category in the dataset */
proc sql;
   select distinct sex
   into :sex1-:sexN
   from sashelp.class;
quit;

%macro analyze_sex;
   %do i=1 %to &sqlobs;
      proc print data=sashelp.class;
         where sex = "&&sex&i";
         title "Listing for Sex = &&sex&i";
      run;
   %end;
%mend analyze_sex;

%analyze_sex;

    

Explanation: This example dynamically creates a macro for each unique sex value and applies a filter in PROC PRINT for each group, generating reports for each distinct value in the dataset.

Scenario 3: Dynamically Generating Conditional Code

In some cases, you need to execute different code based on the values of certain variables or the content of a dataset. Dynamic macro creation helps generate conditional logic on the fly.

Example 3: Conditional Code Generation Based on Data Content

/* Identify numeric variables in the dataset and generate macro code */
proc sql;
   select name
   into :numvar1-:numvarN
   from dictionary.columns
   where libname='SASHELP' and memname='CLASS' and type='num';
quit;

%macro analyze_numeric_vars;
   %do i=1 %to &sqlobs;
      proc means data=sashelp.class;
         var &&numvar&i;
         title "Analysis of &&numvar&i";
      run;
   %end;
%mend analyze_numeric_vars;

%analyze_numeric_vars;

    

Explanation: This code identifies numeric variables in the dataset and dynamically creates macro variables for each. The macro analyze_numeric_vars runs PROC MEANS for each numeric variable, adjusting to any changes in the dataset structure.

Scenario 4: Dynamic Report Generation

Dynamic macros are helpful in generating dynamic reports or exporting data where the structure or content changes frequently. You can use dynamic macros to control file names, report titles, or export paths.

Example 4: Dynamic Report Titles

/* Generate macros for each unique 'name' value and create reports */
proc sql;
   select distinct name
   into :name1-:nameN
   from sashelp.class;
quit;

%macro create_reports;
   %do i=1 %to &sqlobs;
      proc print data=sashelp.class;
         where name = "&&name&i";
         title "Report for &&name&i";
      run;
   %end;
%mend create_reports;

%create_reports;

    

Explanation: This code dynamically creates a report for each unique name in the dataset, with the report’s title reflecting the name being processed. The code adapts to changes in the dataset, automating the report generation process.

Best Practices for Dynamic Macro Creation

  • Use PROC SQL with INTO Clauses: This is the most efficient way to generate dynamic macro variables from dataset content.
  • Limit the Number of Macros: Ensure that you don’t exceed the macro variable limit by limiting the number of macros generated.
  • Use &sqlobs: The &sqlobs macro variable is useful for counting the number of records or unique values, ensuring the loop runs the correct number of times.
  • Avoid Hardcoding: Whenever possible, rely on dynamic macros instead of hardcoding variable names or values to make your code flexible and adaptable.
  • Error Handling: Implement error handling and checks to ensure that dynamic macros are generated correctly without issues during execution.

Conclusion

Dynamic macro creation in SAS provides a robust and flexible way to automate repetitive tasks, process data efficiently, and adjust code dynamically based on dataset content. By generating macros based on variables or values within a dataset, you can create dynamic, scalable solutions for various SAS programming challenges.

**StudySAS Blog: Mastering Clinical Data Management with SAS** 2024-09-05 19:08:00

Comparing VISIT and VISITNUM Values Across SDTM Datasets and the TV Domain

Extracting and Comparing Unique VISIT and VISITNUM Values from SDTM Datasets

Author: [Your Name]

Date: [Creation Date]

In clinical trials, the VISIT and VISITNUM variables are key identifiers for subject visits. Ensuring that all datasets have consistent visit data and that it aligns with the planned visits recorded in the TV (Trial Visits) domain is crucial for accurate data analysis. This post presents a SAS macro that automates the extraction of unique VISIT and VISITNUM values across all SDTM datasets in a library and compares them to those found in the TV domain.

Program Overview

The SAS macro program:

  • Extracts unique VISIT and VISITNUM values from all SDTM datasets in the specified library.
  • Compares these values against those recorded in the TV domain.
  • Highlights any discrepancies between the SDTM datasets and the TV domain.

Macro Code

Here’s the macro that performs the task:

%macro compare_visit(libname=);

    /* Step 1: Get the unique VISIT and VISITNUM values from the TV domain */
    proc sql;
        create table tv_visit as
        select distinct VISIT, VISITNUM 
        from &libname..TV
        where VISIT is not missing and VISITNUM is not missing;
    quit;

    /* Step 2: Get the list of datasets in the library containing both VISIT and VISITNUM */
    proc sql noprint;
        select memname 
        into :dslist separated by ' '
        from sashelp.vcolumn
        where libname = upcase("&libname")
          and name in ('VISIT', 'VISITNUM')
        group by memname
        having count(distinct name) = 2; /* Ensure both VISIT and VISITNUM are present */
    quit;

    /* Step 3: Check if any datasets were found */
    %if &sqlobs = 0 %then %do;
        %put No datasets in &libname contain both VISIT and VISITNUM variables.;
    %end;
    %else %do;
        %put The following datasets contain both VISIT and VISITNUM variables: &dslist;

        /* Initialize an empty dataset for combined VISIT and VISITNUM values */
        data combined_visits;
            length Dataset $32 VISIT $200 VISITNUM 8;
            stop;
        run;

        /* Step 4: Loop through each dataset */
        %let ds_count = %sysfunc(countw(&dslist));
        %do i = 1 %to &ds_count;
            %let dsname = %scan(&dslist, &i);

            /* Extract unique VISIT and VISITNUM values, excluding UNSCHEDULED visits */
            proc sql;
                create table visit_&dsname as
                select distinct "&&dsname" as Dataset, VISIT, VISITNUM
                from &libname..&&dsname
                where VISIT is not missing and VISITNUM is not missing
                  and VISIT not like 'UNSCH%'; /* Exclude UNSCHEDULED visits */
            quit;

            /* Append to the combined dataset */
            proc append base=combined_visits data=visit_&dsname force;
            run;
        %end;

        /* Step 5: Compare combined VISIT/VISITNUM with TV domain */
        proc sql;
            create table visit_comparison as
            select a.*, b.Dataset as In_SDTC_Dataset
            from tv_visit a
            left join combined_visits b
            on a.VISIT = b.VISIT and a.VISITNUM = b.VISITNUM
            order by VISITNUM, VISIT;
        quit;

        /* Step 6: Display the comparison results */
        proc print data=visit_comparison;
        title "Comparison of VISIT/VISITNUM between TV and SDTM Datasets (Excluding Unscheduled Visits)";
        run;
    %end;

%mend compare_visit;

/* Run the macro by specifying your SDTM library name */
%compare_visit(libname=sdtm);

How the Macro Works

This macro performs the following steps:

  1. It first extracts all unique VISIT and VISITNUM values from the TV domain.
  2. It then identifies all datasets in the specified library that contain the VISIT and VISITNUM variables by querying the metadata table SASHELP.VCOLUMN.
  3. For each identified dataset, the macro extracts the distinct VISIT and VISITNUM values and appends them into a consolidated dataset.
  4. Finally, it compares the combined results from the SDTM datasets against the values in the TVff domain and displays any discrepancies.

Use Case

This macro is especially useful when checking that all actual visits recorded in the SDTM datasets align with the planned visits documented in the TV domain. Ensuring consistency between these values is essential for accurate clinical trial reporting and analysis.

Example of Use:

%compare_visit(libname=sdtm);

In this example, the macro will search for VISIT and VISITNUM variables in the SDTM datasets located in the sdtm library and compare them with the values in the TV domain.

Conclusion

By automating the process of extracting and comparing VISIT and VISITNUM values, this macro simplifies what could otherwise be a tedious and error-prone task. It ensures that all visit data is consistent and complete, aligning the planned and actual visits in the SDTM datasets.

Feel free to adapt this macro to meet your specific needs in clinical trials data management!

**StudySAS Blog: Mastering Clinical Data Management with SAS** 2024-09-05 18:44:00

Finding EPOCH Values in SDTM Datasets using a SAS Macro

Finding EPOCH Values in SDTM Datasets using a SAS Macro

Author: [Sarath]

Date: [05SEP2024]

The EPOCH variable is essential in many SDTM datasets as it helps describe the period during which an event, observation, or assessment occurs. In clinical trials, correctly capturing and analyzing the EPOCH variable across datasets is crucial. This post walks through a SAS macro program that automates the process of finding all EPOCH values from any dataset within an entire library of SDTM datasets.

Program Overview

This macro program loops through all the datasets in a specified library, checks for the presence of the EPOCH variable, and extracts the unique values of EPOCH from each dataset. It then consolidates the results and displays them for review.

Key Features:

  • Automatically identifies SDTM datasets containing the EPOCH variable.
  • Extracts unique values from the EPOCH variable for each dataset.
  • Combines results into a single dataset for ease of review.

Macro Code

Here’s the macro that performs the task:

%macro find_epoch(libname=);

    /* Get a list of all datasets in the library */
    proc sql noprint;
        select memname
        into :dslist separated by ' '
        from sashelp.vcolumn
        where libname = upcase("&libname")
          and name = 'EPOCH';
    quit;

    /* Check if any dataset contains the EPOCH variable */
    %if &sqlobs = 0 %then %do;
        %put No datasets in &libname contain the variable EPOCH.;
    %end;
    %else %do;
        %put The following datasets contain the EPOCH variable: &dslist;

        /* Loop through each dataset and extract unique EPOCH values */
        %let ds_count = %sysfunc(countw(&dslist));
        %do i = 1 %to &ds_count;
            %let dsname = %scan(&dslist, &i);
            
            /* Extract unique values of EPOCH */
            proc sql;
                create table epoch_&dsname as
                select distinct '&&dsname' as Dataset, EPOCH
                from &libname..&&dsname
                where EPOCH is not missing;
            quit;
        %end;

        /* Combine the results from all datasets */
        data all_epochs;
            set epoch_:;
        run;

        /* Display the results */
        proc print data=all_epochs;
        title "Unique EPOCH values across datasets in &libname";
        run;
    %end;

%mend find_epoch;

/* Run the macro by specifying your SDTM library name */
%find_epoch(libname=sdtm);

How the Macro Works

The macro works by querying the SASHELP.VCOLUMN metadata table to check for the presence of the EPOCH variable in any dataset. It loops through the datasets that contain the variable, extracts distinct values, and aggregates the results into a single dataset.

Steps:

  1. Identifies all datasets in the specified library.
  2. Checks each dataset for the EPOCH variable.
  3. For datasets containing EPOCH, it extracts unique values.
  4. Combines the unique values from all datasets into one result dataset.

Use Case

Imagine you have a large collection of SDTM datasets and need to quickly check which datasets contain the EPOCH variable and what unique values it holds. Running this macro allows you to do this across your entire library with minimal effort.

Example of Use:

%find_epoch(libname=sdtm);

In this example, the macro will search for the EPOCH variable in the SDTM datasets stored in the library named SDTM. It will then display the unique values of EPOCH found in those datasets.

Conclusion

This macro simplifies the task of analyzing the EPOCH variable across multiple datasets in a library, saving time and reducing manual effort. By leveraging the power of PROC SQL and macros, you can automate this otherwise tedious process.

Feel free to adapt and expand this macro to suit your specific needs! Happy coding!

Comprehensive SAS Interview Scenarios and Solutions for Clinical Programming

Comprehensive SAS Interview Scenarios and Solutions for Clinical Programming

Comprehensive SAS Interview Scenarios and Solutions for Clinical Programming

Scenario 1: Creating SDTM Domains

Question: You are given a raw dataset from a clinical trial. How would you approach creating an SDTM domain?

Answer: First, I would familiarize myself with the SDTM Implementation Guide to understand the specific structure and variables required for the domain. I would then map the raw data to the corresponding SDTM variables, ensuring to follow CDISC standards. This involves creating a specification document that outlines the mapping rules and any necessary derivations. Finally, I would validate the domain using tools like Pinnacle 21 to ensure compliance.

Scenario 2: Handling Missing Data

Question: How do you handle missing data in your analysis datasets?

Answer: Handling missing data depends on the type of analysis. Common methods include imputation, where missing values are replaced with the mean, median, or mode of the dataset, or using a placeholder like “999” for numeric or “UNK” for character variables. The choice of method depends on the nature of the data and the analysis requirements. I would document the method used for handling missing data in the analysis dataset metadata.

Scenario 3: Pinnacle 21 Validation

Question: You’ve run Pinnacle 21 validation and received multiple warnings and errors. How do you address these?

Answer: I would prioritize the errors, as these typically indicate critical issues that could prevent submission. I would review the Pinnacle 21 documentation to understand the nature of each error and make the necessary corrections in the datasets. Warnings, while less critical, should also be addressed if they impact the integrity or clarity of the data. After making the corrections, I would rerun Pinnacle 21 to ensure all issues are resolved.

Scenario 4: Define.XML Creation

Question: How would you approach creating a Define.XML for a study with multiple domains?

Answer: Creating a Define.XML involves several steps:

  • Compile Metadata: Gather all necessary metadata, including variable definitions, controlled terminologies, value-level metadata, and derivations for each domain.
  • Use Define.XML Tools: Utilize software like SAS or Pinnacle 21 to create the XML file. These tools often come with templates that help structure the Define.XML according to CDISC standards.
  • Review and Validate: Ensure the XML is compliant with CDISC standards by using validation tools like Pinnacle 21 or WebSDM. Review the file to confirm that all metadata accurately reflects the study data.
  • Link Annotations: If applicable, link the Define.XML to the annotated CRF (aCRF) to ensure traceability from raw data to SDTM datasets.

Scenario 5: Mapping Specifications

Question: What steps do you take to create a mapping specification document for SDTM conversion?

Answer:

  1. Understand the Study: Review the protocol and CRFs to understand the study design and data collection process.
  2. Review Raw Data: Examine the raw datasets to identify the source variables and their formats.
  3. Create Mapping Specifications: Define how each variable in the raw dataset maps to the corresponding SDTM domain, including any derivations, transformations, or standardizations required.
  4. Document Assumptions: Clearly document any assumptions made during the mapping process, especially if data needs to be derived or inferred.
  5. Review and Validate: Have the mapping specification reviewed by a peer or a senior programmer to ensure accuracy and completeness.

Scenario 6: Custom Domain Creation

Question: If a study requires a custom domain not defined in the SDTM Implementation Guide, how would you create it?

Answer:

  1. Assess the Need: Determine why a custom domain is necessary and whether existing domains can be adapted instead.
  2. Define the Domain: Create a structure for the custom domain, ensuring it adheres to the SDTM model’s general principles, such as consistency in variable naming conventions and dataset structure.
  3. Document the Domain: Develop comprehensive documentation for the custom domain, including its purpose, structure, variables, and any derivations.
  4. Validate: Test the custom domain thoroughly to ensure it integrates well with the standard SDTM domains and meets submission requirements.

Scenario 7: Handling Large Datasets

Question: How would you optimize a SAS program to handle very large datasets?

Answer:

  • Efficient Data Step Processing: Use WHERE clauses to filter data early in the process and avoid unnecessary data processing.
  • Indexing: Apply indexing to frequently accessed variables to speed up data retrieval.
  • Memory Management: Utilize appropriate system options like MEMSIZE and SORTSIZE to optimize memory usage during processing.
  • SQL Optimization: For PROC SQL, avoid Cartesian joins and use appropriate joins (INNER, LEFT) to minimize processing time.
  • Parallel Processing: If possible, leverage SAS’s multi-threading capabilities or break the task into smaller chunks that can be processed in parallel.

Scenario 8: aCRF Annotation

Question: What is your process for annotating aCRFs?

Answer:

  1. Understand the CRF: Review the CRF to understand what data is being collected and how it relates to the SDTM domains.
  2. Annotate with SDTM Variables: Map each field on the CRF to its corresponding SDTM variable, noting the domain and variable name on the CRF.
  3. Ensure Clarity: Annotations should be clear and consistent, using standard CDISC nomenclature.
  4. Review and Validation: Have the annotated CRF reviewed by another programmer or a domain expert to ensure accuracy and completeness.

Scenario 9: Handling Adverse Events Data

Question: You are tasked with creating an Adverse Events (AE) domain. What steps would you follow?

Answer:

  1. Source Data Review: Examine the raw adverse event data to understand the structure and content.
  2. Mapping: Map the raw data to the AE domain variables, ensuring that all required and expected variables are included, such as AE term, start/end dates, severity, and relationship to treatment.
  3. Derivations: Derive any additional variables as required, such as AE duration or seriousness.
  4. Validation: Validate the AE dataset using Pinnacle 21 to ensure it meets SDTM standards and is ready for submission.

Scenario 10: Data Cleaning

Question: Describe how you would clean a dataset that has inconsistent date formats and missing values.

Answer:

  1. Identify Inconsistencies: Use PROC FREQ or PROC SQL to identify the inconsistent date formats.
  2. Standardize Dates: Convert all date variables to a standard format (e.g., ISO 8601) using functions like INPUT, PUT, or DATEPART.
  3. Handle Missing Values: Decide on an appropriate method for handling missing values based on the type of data (e.g., imputation, substitution with median values, or exclusion of incomplete records).
  4. Validation: After cleaning, review the dataset to ensure that all inconsistencies have been resolved and that the dataset is complete and ready for analysis.

Scenario 11: Generating Define.XML

Question: How do you ensure that the Define.XML you generate is fully compliant with CDISC standards?

Answer: I would follow these steps:

  • Utilize a CDISC-compliant tool like Pinnacle 21 to generate the Define.XML.
  • Ensure that all metadata, including variable attributes, controlled terminology, and value-level metadata, are accurately captured and documented in the Define.XML.
  • Link the Define.XML to the Annotated CRF (aCRF) and other supporting documentation for traceability.
  • Run validation checks using Pinnacle 21 to ensure that the Define.XML meets all CDISC requirements.
  • Review the Define.XML manually to confirm that it aligns with the study’s metadata and regulatory requirements.

Scenario 12: SDTM Mapping Validation

Question: What steps would you take to validate SDTM mapping for a clinical trial dataset?

Answer:

  • Cross-Check with Specifications: Ensure the SDTM mappings align with the mapping specifications and the SDTM Implementation Guide.
  • Use Pinnacle 21: Run Pinnacle 21 validation checks to identify any discrepancies, errors, or warnings in the mapped SDTM datasets.
  • Manual Review: Conduct a manual review of key variables and domains to ensure that the mappings are accurate and meaningful.
  • Peer Review: Have the mappings reviewed by a peer or senior programmer to catch any potential issues that might have been missed.
  • Final Validation: Re-run Pinnacle 21 and any other validation tools to ensure all issues are resolved and the datasets are compliant.

Scenario 13: Handling Ad-Hoc Requests

Question: You receive an ad-hoc request to provide summary statistics for a particular dataset that hasn’t been prepared yet. How do you handle this request?

Answer: I would:

  1. Clarify the Request: Ensure that I fully understand the specifics of what is being asked, including the variables of interest, the type of summary statistics required, and the timeframe.
  2. Prepare the Dataset: Quickly prepare the dataset by selecting the relevant variables and applying any necessary transformations or filters.
  3. Generate Statistics: Use PROC MEANS, PROC FREQ, or PROC SUMMARY to generate the requested summary statistics.
  4. Validate the Output: Review the output to ensure it accurately reflects the data and the request.
  5. Deliver the Results: Provide the results in the requested format, ensuring that they are clearly presented and annotated as necessary.

Scenario 14: Complex Data Merging

Question: How would you merge multiple datasets with different structures in SAS to create a comprehensive analysis dataset?

Answer:

  1. Identify Common Keys: Determine the common keys across datasets that will be used for merging (e.g., subject ID, visit number).
  2. Standardize Variables: Ensure that variables to be merged are standardized in terms of data type, length, and format.
  3. Merge Datasets: Use MERGE or PROC SQL to combine the datasets, ensuring that the merge keys are properly aligned.
  4. Handle Discrepancies: Address any discrepancies or missing data resulting from the merge, such as mismatched records or differing formats.
  5. Validate the Merged Dataset: Run checks to ensure that the merged dataset is accurate, complete, and ready for analysis.

Scenario 15: Handling Data Integrity Issues

Question: You discover data integrity issues during your analysis, such as duplicate records or outliers. How do you address these?

Answer:

  1. Identify and Isolate the Issues: Use PROC FREQ, PROC SORT with NODUPKEY, or other SAS procedures to identify duplicate records or outliers.
  2. Consult with Data Management: If necessary, consult with the data management team to understand the source of the issues and confirm whether they need to be corrected or excluded.
  3. Correct or Exclude Data: Depending on the issue, either correct the data (e.g., by removing duplicates) or flag the problematic records for exclusion from the analysis.
  4. Document the Process: Document the steps taken to address the data integrity issues, including any decisions made regarding data exclusion or correction.
  5. Proceed with Analysis: After addressing the issues, proceed with the analysis, ensuring that the data used is accurate and reliable.

Scenario 16: Creating Safety Reports

Question: How would you generate a safety report for a clinical trial using SAS?

Answer:

  1. Prepare the Data: Start by creating datasets for adverse events (AE), laboratory results (LB), and vital signs (VS), ensuring they are cleaned and standardized.
  2. Generate Descriptive Statistics: Use PROC FREQ and PROC MEANS to generate descriptive statistics for safety variables, such as incidence rates of adverse events, mean changes in lab values, and vital sign deviations.
  3. Summarize Adverse Events: Create summary tables that display the frequency and percentage of subjects experiencing each adverse event, stratified by treatment group.
  4. Create Listings: Generate detailed listings for serious adverse events, deaths, and other safety-related data points that require close review.
  5. Validate the Report: Ensure that all outputs are accurate by cross-verifying with the raw data and using validation checks, such as comparing with prior reports or known benchmarks.
  6. Format for Submission: Use PROC REPORT or ODS to format the output into tables and listings that meet regulatory submission standards.

Scenario 17: CDISC Compliance in SAS Programming

Question: How do you ensure your SAS programming complies with CDISC standards?

Answer:

  1. Follow CDISC Guidelines: Ensure that all datasets and variables conform to the SDTM or ADaM Implementation Guide, including naming conventions, variable formats, and domain structures.
  2. Use Pinnacle 21: Regularly run Pinnacle 21 validation checks to identify and correct any deviations from CDISC standards.
  3. Document All Processes: Maintain comprehensive documentation that explains the data mapping, derivation, and transformation processes, ensuring traceability and compliance with CDISC standards.
  4. Peer Review: Conduct peer reviews of your SAS code and datasets to ensure they adhere to CDISC guidelines and best practices.
  5. Stay Updated: Keep up with the latest CDISC updates and guidelines to ensure ongoing compliance and incorporate any new standards into your programming practices.

Scenario 18: Managing CDISC SDTM Mappings

Question: Describe how you manage SDTM mappings for multiple studies with varying data structures.

Answer:

  1. Standardize Processes: Develop and use standard operating procedures (SOPs) for SDTM mapping to ensure consistency across studies.
  2. Create Templates: Use mapping templates that can be adapted to different studies, minimizing the need to start from scratch each time.
  3. Version Control: Implement version control to manage changes in mapping specifications across different studies and ensure that the correct version is used for each submission.
  4. Automate Where Possible: Automate repetitive tasks in the mapping process using SAS macros or other tools to increase efficiency and reduce errors.
  5. Regular Review: Regularly review and update mapping specifications to incorporate new learnings, best practices, and regulatory requirements.

Scenario 19: Reporting Serious Adverse Events

Question: How would you create a report summarizing serious adverse events (SAEs) for a clinical trial?

Answer:

  1. Identify SAEs: Extract and review the data related to serious adverse events from the AE domain.
  2. Summarize by Treatment Group: Use PROC FREQ to summarize the incidence of SAEs by treatment group, including the number and percentage of subjects affected.
  3. Detail Listings: Generate detailed listings of each SAE, including subject ID, event term, start and end dates, severity, and outcome.
  4. Graphical Representation: Consider using PROC SGPLOT or PROC GCHART to create visual representations of SAE distributions across treatment groups.
  5. Validate: Cross-check the summary and listings against the raw data and previous reports to ensure accuracy.
  6. Prepare for Submission: Format the summary tables and listings according to regulatory guidelines, ensuring they are ready for inclusion in the Clinical Study Report (CSR).

Scenario 20: Resolving Data Discrepancies

Question: You discover discrepancies between the raw data and the SDTM datasets. How do you address this?

Answer:

  1. Identify the Discrepancies: Use PROC COMPARE to identify and isolate discrepancies between the raw data and the SDTM datasets.
  2. Determine the Source: Investigate the source of each discrepancy, whether it’s due to data entry errors, mapping issues, or other factors.
  3. Consult Stakeholders: Work with data management, statisticians, or other relevant stakeholders to resolve the discrepancies.
  4. Update the SDTM Datasets: Make necessary corrections to the SDTM datasets, ensuring that they accurately reflect the raw data.
  5. Document Changes: Keep detailed records of the discrepancies identified, the steps taken to resolve them, and the final changes made to the datasets.
  6. Revalidate: Re-run validation checks to ensure all discrepancies have been resolved and the datasets are now accurate and compliant.